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Manipulation of dynamical systems by symmetry breaking
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~Received 20 December 2001; published 7 October 2002!

We propose an approach to manipulate and control transport in Hamiltonian systems which are characterized
by a mixed phase space. The approach is based on symmetry breaking of the phase space structure by applying
a zero-meanperiodic force for a finite duration of time. This induces time and space reversal asymmetry, which
modifies the internal dynamics of the system and leads to directed transport. It is shown that our strategy allows
to perform manipulations both with individual particles and with statistical ensembles of particles.
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The origin of transport in dynamical systems has been
active research area for a long time@1#. Recent investigations
in this field have been motivated by the revival of theratchet
idea that leads to directed transport in the absence of bias@2#.
Most studies have focused on noisy dissipative system
the overdamped limit, which appear suitable for microb
ligical examples@3#. The opposite limit, in which inertia
plays a essential role, has attracted less attention, althou
offers some new directions in current rectification@4#.

Fundamental to questions of transport in general, and
tification in particular, are Hamiltonian systems which e
hibit rich and varied behavior, ranging from regular
anomalous motion which can be related to a mixed str
tured phase space@5#. Kinetics in Hamiltonian systems ha
been shown to provide a foundation for problems of imp
tance such as the link between stochastic processes an
nature of dynamical systems@6#. It has been demonstrate
@7# that the necessary conditions for current rectification
Hamiltonian systems is time reversal asymmetry. Namely
order to obtain a current, symmetry breaking~SB! needs to
be imposed on the system@7,8#.

In this paper, we show how understanding the SB mec
nism for directed motion@9# naturally leads to a new tool to
manipulate classical Hamiltonian systems. The approach
propose aims at cases for which imposing global gradien
impossible. One can easily imagine a situation where rem
control is required, or when a global bias is not desirab
Here we demonstrate how the SB approach helps to man
late both single particles and statistical ensembles of
ticles. In the case of a statistical ensemble, SB opens
possibilities for handling some fraction of the particles,
process which cannot be performed using standard bias t
niques.

Let us consider the example of a particle which moves
the periodic nonlinear potentialU(x)5cos(x) under the in-
fluence of a periodic train ofd kicks with an amplitudeE1
and periodT @1,5#,

Hs~p,x,t !5
p2

2
1E1 cos~x! (

n52`

`

d~ t2nT!. ~1!

The Hamiltonian~1! is symmetric with respect to time
and space reversal transformation$t→2t,x→2x%, so a
particle, whose dynamics obey Eq.~1!, performs a diffusive
motion with zero drift. The symmetry can be broken
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switching on a second source of kicks which are shifted
time and space domains, with respect to the first one,

H~p,x,t !5Hs~p,x,t !1F~ t,ton ,to f f!E2 cos~x1f!

3 (
l 52`

`

d~ t2nT1t!, ~2!

where f and t are spatial and temporal shift constan
F(t,ton ,to f f)5Q(t2ton)Q(to f f2t) is a square pulse func
tion, andton and to f f are the switching on and switching o
times. The duration time for the SB force is, therefore,tSB
5to f f2ton . Notice that this SB method is different from th
usually used ‘‘two-harmonics’’ ratchet approach@4,7,9#.

Let us start from the case of a constant SB (ton
52`, to f f5`). For nonequidistant kicks,tÞmT/2, and
fÞsp (m,s5•••21,0,1, . . . ), all relevant symmetries are
broken and we fulfill the necessary conditions for the appe
ance of a current@7#. The evolution of the Hamiltonian sys
tem ~2! can be described by a pair of consecutive maps
positionx and momentump,

xn118 5xn1pnt,

pn118 5pn1U8~xn11!, ~3!

xn115xn118 1pn118 ~T2t!,

pn115pn118 1F~ t,ton ,to f f!U8~xn111f!, ~4!

where Eqs.~3! correspond to kicks from the main sourc
and Eqs.~4! correspond to kicks from the SB source.

The Hamiltonian system in Eqs.~1!–~4! has a compli-
cated phase space with coexisting and interwoven set
invariant manifolds with different drift velocity values an
directions. It is characterized by the presence of chaotic
ers, which originate from nonlinear resonance separatri
and regular regions, consisting of KAM-tori with comple
sticky barriers between the chaotic and regular regions@5#.
Due to these barriers a trajectory can be trapped near reg
islands for a long time. This leads to the appearance of flig
in the case of nonzero winding numbersv, or localized ro-
tating modes withv50. For some hierarchy of ballistic is
lands this trapping time can be anomalously long, result
in Lévy flights @10#. In Refs.@9,11#, it has been shown tha
©2002 The American Physical Society03-1
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the generation of directed currents in Hamiltonian system
determined by breaking the symmetry of Le´vy flights due to
asymmetry in the structure of the hierarchy of regular isla
in phase space.

Here we are interested in dynamics inside the main
chastic layer nearp50, which corresponds to the groun
state. Switching on the second kicking source with amplitu
E2 and phase shiftsf andt results in asymmetric overlap
ping of the main chaotic layer with the layer of ballist
islands ~see Fig. 1!. This overlapping produces a curren
Current inversion~mirroring the layers overlap! can be ob-
tained by a simple shift inversionf→2f or t→T2t.

For the analysis of the dynamics we use the propag
P(x,t), i.e., the probability density of a particle to be atx at
time t @12#. In Fig. 2 we show the propagator for timet
51000T obtained by averaging over 105 trajectories, starting
in a chaotic area of the main layer. The peaks in the pro
gator correspond to flights that a particle performs whe
sticks to ballistic islands. The locations of the peaks are
termined by the corresponding winding numbers. From
structure of the propagator it is clearly seen that the la
scale particle displacements, when compared to the perio

FIG. 1. Dependence ofx(t) versus t for ~a! the symmetric
Hamiltonian, Eq.~1! (E150.24, T50.6) and~b! the Hamiltonian
with the additional SB source~2!, Eq. ~2! (E150.24, T50.6, E2

50.11, f50.8, t50.4). Insets show the corresponding Poinca´
sections.

FIG. 2. The propagator for a fixed time (t51000T) for ~a! the
symmetric Hamiltonian, Eq.~1! ~dotted line! and ~b! the Hamil-
tonian with constant SB, Eq.~2! ~solid line!. Inset displays sticky
islands correspond to the main peaks in the propagator shape
rameters same as in Fig. 1.
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the potentialU(x), are a result of the flights. Directed pa
ticle drift stems from asymmetry in the structure of the b
listic islands with positive and negative winding numbe
Moreover, most of the contribution to the particle’s transp
in the positive direction comes directly from the main ball
tic islands withv51 ~see inset in Fig. 2!.

Based on the above, we expect that controlling the ma
fold overlap in phase space, one can control the direc
transport by tuning the value of the velocity. We now d
scribe a possible way to manipulate a particle through
during a finite time intervaltSB. In order to do this we use
two features of the system:~i! the possibility to temporarily
remove the barriers in phase space~formed by invariant
KAM-tori ! between different invariant manifolds, and~ii ! the
sticky nature of the regular islands. Namely, one can rem
the barriers from the phase space during a time intervaltSB

and then restore them. This can be viewed as an act
demon@5,13#. Here the demon removes the barrier~‘‘opens a
door’’! at time ton and restores the barrier~‘‘closes the
door’’! at timeto f f . Due to the stickness property, the info
mation required for the control the particle is its veloci
only. This means that the ‘‘door’’ closes when the velocity
the particle is close to a desired winding number. The m
efficient manipulation can be achieved using the ‘‘stickie
islands, which are present in both Hamiltonians, the symm
ric one,Hs , in Eq. ~1!, and the SB one,H, in Eq. ~2!. In this
way the time durationtSB needed for the manipulation de
creases, and the accuracy of the procedure increases. B
we outline an example of the SB strategy of our demon.

Let us start from the situation in which a particle is l
cated inside the main stochastic layer. If the demon want
move the particle in the positive direction then the parti
must be shifted into the upper ballistic layer. In this case,
demon must switch on the second source ofd kicks, that
leads to overlapping of the main layer with the upper o
The demon has to follow the velocity of the particle. Whe
for duration of abouttcontr510T, the velocity is close
enough to the winding number of stickiest island, it indica
that the particle is trapped in the upper layer with a hi
probability. At this stage the demon switches off the seco
source. Now the particle remains locked inside this layer a
moves approximately with a constant velocity in the posit
direction. After some time, when the particle reaches a
quired region in space and the demon would like to stop
he should again switch on the second source and follow
velocity. If the particle velocity is close enough to zero th
it means that the particle sticks to a localized resonance
has returned to the main chaotic layer. The demon n
switches off the second source and the particle is locked b
inside the main layer. The mean energy returns to its va
before the SB action.

In Fig. 3, we show the realization of the SB procedure
the system according to Eq.~2!. We check the displacemen
of the particle after each time step 10T. If this displacement
is close enough totcontr ~about 10%), we take it as a sig
that the particle is near the corresponding island. The dir
tion of the motion is defined by the value of the time shiftt
of the second source.
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The mean time needed for the demon’s SB action can
evaluated using the distribution of times between conse
tive sticking events in the case of a permanent SB action,
~2! @10#. The time needed to moves particle to the flyi
mode can be estimated as the first moment of the probab
distribution function~PDF! for the ballistic island. For the
same parameters as in Fig. 3, this procedure g
.35tcontr . The time needed for return the particle back
the nondrift diffusive mode can be estimated as first mom
of the PDF for the central localized island. This giv
.48tcontr .

The SB strategy can be also used in the case of a sta
cal ensemble of particles. In this case, the SB can cha
populations of particles on the different manifolds throu
the control of the KAM-tori barriers. Let us consider th
example of a continuous system with a Hamiltonian, wh
describes the motion of particles in a standing wave wit
modulating amplitude@1#:

Hs~p,x,t !5
p2

2
1E1 cos~x!cos2~vt !. ~5!

Such a Hamiltonian system has been realized in ato
optics experiments probing motion in a wave produced b
laser field@14#. Here we investigate the classical limit.

FIG. 3. A realization of the control approach.~a! Trajectory for
the Hamiltonian in Eq.~2!. The SB source acts for time window
marked by the bars. The widths of the bars equal the duration o
SB action. The arrows point to the resonance involved in the o
lap ~upper and lower ones correspondingly!. The time phase shift is
t50.4 for the two first pulses andt50.2 for the last ones. Inse
shows the Poincare´ section for the manipulation period.~b! The
Poincare´ section~white circles! of the system in Eq.~2! after every
time stept510T ~see text for details! during the first SB pulse. The
parameters as in Fig. 1.
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Following steps analogous to those applied above, we
brake all relevant symmetries by switching on a seco
standing wave, shifted with respect to the main one,

H~p,x,t !5Hs~p,x,t !1F~ t,ton ,to f f!E2 cos~x1f!

3cos2~vt1t!, ~6!

wheref and t are spatial and temporal shift constants a
E2 is the amplitude of the second standing wave.

We consider the dynamics of an ensemble of partic
with an initial Maxwellian distribution inp, and homoge-
neous inx, inside one spatial period of the potential

r~p,x,0!5
1

2p
A b

2p
e2(b/2)p2

Q~x!Q~2p2x! ~7!

with b510.
Under the influence of the main standing wav

E1cos(x)cos2(vt), the ensemble performs diffusive spreadi
with no drift. Now we show that using SB for a finite dura
tion tSB, i.e., a pulse of a second force, Eq.~6!, it is possible
to chip off a small fraction of the particles from the an initi
‘‘cloud’’ and transport it in a preasiggned direction. Name
a small fraction~compared to the initial ensemble! of par-
ticles can be locked into the manifold with a nonzero dr
After switching off the pulse of the second standing wave
particles move in the prescribed direction with a velocity
the corresponding manifold. This is a kind of tweeze
which chip off a some fraction of particles. In Fig. 4 w
show an example of the realization of this strategy. SB
duces an overlap of the main chaotic layer with the th
upper ballistic layer. The number of chipped particles can
controlled by variation oftSB. For example, fortSB510T,
the chipped fraction is about 3% and fortSB520T is about
7%. It should be mentioned that this manipulation cannot

e
r-

FIG. 4. The spatial distribution of an ensemble of particleN
5104 ~see text! for the Hamiltonian in Eq.~6! (E150.5, E2

50.1, T52p, f51.2, t50.8) ~a! just before and~b! after the
action of the SB force (ton5200T, to f f5220T). The inset is an
enlargement of the additional peak that corresponds to the chip
fraction of the directed particles.
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achieved by standard technique using an external bias, s
this will lead to the total displacement of the ensemble on
The SB approach, proposed here, provides, therefore, a
possibility to perform a nontrivial manipulation with statist
cal ensembles using zero-mean external fields.

In summary, we have shown that SB provides a new t
for manipulating and directing dynamical systems. This
proach can be also realized for systems with an additive d
ing force @9,11#. In dissipative systems, the roles of man
folds with different currents are expected to be played
limit cycles with different winding numbers@1#. Symmetry
implies here that ballistic cycles with opposite winding nu
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bers always appear as pairs and have equal~in volume! ba-
sins of attraction. The SB can lead to a situation where
of these cycles loses stability and disappears from the ph
space@7#. Namely, as in the Hamiltonian case discuss
above, it is possible to redirect particles from one cycle
another using SB and thereby change the cycle populat
in the ensemble case.
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